NEW YORK SOCIETY FOR GASTROENTEROLOGY & ENDOSCOPY

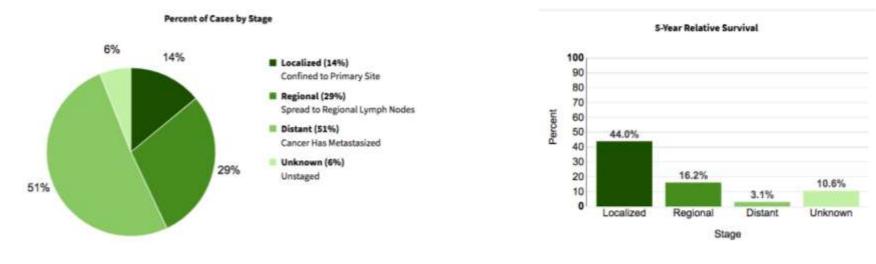
48th Annual NEW YORK COURSE December 12-13, 2024 • New York, NY

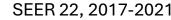
Pancreas Cancer Prevention: Can We Make a Difference?

Lauren Khanna, MD, MS

Chief, Advanced Endoscopy, Tisch Hospital Director, NYU Advanced Endoscopy Fellowship Assistant Professor of Medicine, NYU School of Medicine No relevant disclosures

48th Annual NEW YORK COURSE December 12-13, 2024 New York, NY


New York Society for Gastroenterology and Endoscopy


Epidemiology of Pancreatic Cancer

- Age-adjusted rate of new cases: 13.5 per 100,000 persons per year
- Median age diagnosis 70

New York Course

- Lifetime risk of developing PC: 1.7%
- 5 year survival 12.8% (data 2014-2020, up from 6.0% 2003-2009)

Risk Factors for Pancreatic Cancer

Non-Inherited

- Non-modifiable
 - Age
 - Gender
 - Ethnicity
- Modifiable
 - Tobacco
 - Alcohol
 - Diabetes
 - Obesity
 - Chronic pancreatitis
 - Physical inactivity
 - Helicobacter pylori
 - Occupational exposures
 - Periodontal disease

Inherited

- Hereditary pancreatitis
- Inherited cancer syndromes
 - Breast and ovarian cancer
 - Peutz-Jeghers
 - FAMMM syndrome
 - Lynch syndrome
 - Familial pancreatic cancer
- Non-O blood group

Tobacco

- RR at least 1.5-2
- Increase with amount of cigarettes consumed
- Decreases with smoking cessation
 - After 10-20 years, risk returns to level of non-smokers
- Risk may exist with smokeless tobacco as well
- Estimated that 25% pancreatic cancer deaths in US are attributable to tobacco

Alcohol

- No significant correlation with mild to moderate alcohol use
- Dose dependent
- Heavy alcohol use
 - >6 drinks/day OR 1.5
 - >3 drinks/day OR 1.2
- Heavy liquor increases risk compared to beer or wine
- Binge drinking pattern increases risk

Wang 2016, Midha 2016, Gupta 2010

Diabetes

- Pooled OR ~2
- Cause or effect?
 - Case control study in PC showed DM more prevalent in cases than controls (47 vs 7%) and more likely diagnosed in past 2 years (74 vs 53%)
 - But studies following pts prospectively also showed increased PC in pts with DM than in those without

Obesity

- RR 1.3 for both men and women
 - meta-analysis 9-10 studies
- Increases with BMI
 - BMI 25-30: 13% increased risk PC
 - BMI 30-35: 19% increased risk PC

Study or subgroup	Log (risk ratio)	SE	Weight	Risk ratio IV, random, 95% CI	Risk ratio IV, random, 95% CI
Batty et al. (2009)	0.1655	0.201	12.8%	1.18 [0.80, 1.75]	
Chang et al. (2006, 2007)	0.039	0.159	14.8%	1.04 [0.76, 1.42]	
Feigelson et al. (2004)	0.8671	0.236	11.4%	2.38 [1.50, 3.78]	
Larsson et al. (2005)	0.73237	0.365	7.2%	2.08 [1.02, 4.25]	
Oh et al. (2005)	0.03922	0.507	4.5%	1.04 [0.39, 2.81]	
Otani et al. (2005)	-0.35667	0.275	9.9%	0.70 [0.41, 1.20]	
Rapp et al. (2005)	0.85015	0.351	7.5%	2.34 [1.18, 4.66]	
Samanic et al. (2006)	0.14842	0.141	15.6%	1.16 [0.88, 1.53]	
Sun et al. (2008)	0.29267	0.293	9.2%	1.34 [0.75, 2.38]	
Suzuki et al. (2006)	0.73237	0.365	7.2%	2.08 [1.02, 4.25]	
Total (95% CI)			100.0%	1.36 [1.07, 1.73]	•
Heterogeneity: $\tau^2 = 0.08$; χ^2	= 20.77, df = 9 (P	= 0.01);	$I^2 = 57\%$		
Test for overall effect: $Z = 2$.	54 (P = 0.01)				0.1 0.2 0.5 1 2 5 10

(a)

Study or subgroup	Log (risk ratio)	SE	Weight	Risk ratio IV, random, 95% CI	Risk ratio IV, random, 95% CI
Bostwik et al. (1994)	0.13103	0.179	6.7%	1.14 [0.80, 1.62]	-
Chang et al. (2006, 2007)	0.285	0.201	5.3%	1.33 [0.90, 1.97]	
Feigelson et al. (2004)	0.54812	0.267	3.0%	1.73 [1.03, 2.92]	
Larsson et al. (2005)	0.39204	0.456	1.0%	1.48 [0.61, 3.62]	
Morimoto et al. (2002)	0.0953	0.15825	8.5%	1.10 [0.81, 1.50]	
Otani et al. (2005)	0.18232	0.234	3.9%	1.20 [0.76, 1.90]	
Reeves et al. (2007, 2011)	0.3148	0.079	34.2%	1.37 [1.17, 1.60]	-
Stevens et al. (2009)	0.293	0.081	32.5%	1.34 [1.14, 1.57]	
Sun et al. (2008)	0.5878	0.236	3.8%	1.80 [1.13, 2.86]	
Suzuki et al. (2006)	0.39204	0.456	1.0%	1.48 [0.61, 3.62]	
Total (95% CI)			100.0%	1.34 [1.22, 1.46]	•
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 5.24$, df = 9 ($P = 0.81$); $I^2 = 0.94$					
Test for overall effect: $Z = 6.26 (P < 0.00001)$				0.1 0.2 0.5 1 2 5 10	

(b)

FIGURE 10: (a) Obesity and pancreatic cancer in men. (b) Obesity and pancreatic cancer in women.

 In women, waist circumference significantly associated with increased risk PC

Dobbins 2013, Arslan 2010

Protective Factors

Statin

- Case control study
 - Ever use statin reduced risk OR 0.66
 - In men OR 0.5
 - >10 year use statin OR 0.51
- ASA
 - Meta-analysis OR 0.77
 - Systematic review of 12 observational studies OR 0.82

Walker 2015, Zhang 2015, Sun 2019

Inherited Risk Factors

- 5-10% of patients with pancreatic cancer have a first degree relative (FDR) with PC
- Risk for PC increased with family history of PC
- Risk may be higher in those with family history of young-onset PC (less than age 50)

Inherited Risk Factors

Table 1. Risk for Pancreatic Cancer Related to Genetic Mutation

Genes	Common name	Risk of pancreatic cancer	
STK11/LKB1	Peutz-Jeghers syndrome	RR, 132 (95% Cl, 44-261)	
PRSS1	Hereditary pancreatitis	SIR, 53 (95% CI, 23-105)	
CDKN2A	Familial atypical multiple mole/melanoma syndrome	RR, 13–39	
MLH1, MSH2, MSH6	Lynch syndrome	RR, 8.6-11	
TP53	Li-Fraumeni syndrome	RR, 7.3 (95% Cl, 2-19)	
ATM	NA	RR, 3.92 (95% CI, 0.44-14.2)	
BRCA1	Hereditary breast and ovarian cancer	RR, 2.26 (95% Cl, 1.26-4.06)	
BRCA2, PALB2	2011년 - 1998년 11월 21일 - 1999년 11일 - 199 11일 - 1999년 11일 - 1999년 11일 11일 - 1999년 11일	RR, 3.5-6.2 (95% CI 1.87-6.58	
Familial pancreas cancer in 1 or 2 first-degree relatives	Familial pancreas cancer	RR, 4–9.3	

From Davee et al,⁹ adapted with permission. NA, not applicable; RR, relative risk; SIR, standardized incidence ratio.

Hereditary Pancreatitis

- estimated lifetime risk of PC of 40%
- autosomal dominant
- recurrent attacks acute pancreatitis, beginning in childhood, develop chronic pancreatitis at a young age
- hereditary pancreatitis associated with mutations in *PRSS1*:
 - cationic trypsinogen gene -> prevent inactivation of trypsin -> pancreatic autodigestion
 - more than 25 different mutations described
- mutations of *PST1/SPINK1*:
 - pancreatic secretory trypsin inhibitor aka serine protease inhibitor Kazal type 1
 - associated with chronic pancreatitis in children, tropical pancreatitis, alcoholic chronic pancreatitis

Peutz-Jeghers

- STK11
- Pigmented mucocutaneous macules
- Multiple hamartomatous gastrointestinal polyps
- Lifetime risk PC up to 36%

Giardiello 1987; Giardiello 2000

Familial Atypical Multiple Mole Melanoma Syndrome (FAMMM)

- CDK2NA
- Characterized by multiple nevi, cutaneous and ocular malignant melanomas, pancreatic cancer
- Variant FAMMM-pancreatic carcinoma syndrome specific p16 mutation, with risk of PC up to 17%

Lynch Syndrome

- Autosomal dominant mismatch repair gene defect
- MLH1, MSH2, MSH5, PMS2

	Cun	nulative Risk		
Age, y	Population, % ^b	Families With MMR Gene Mutation, % (95% Cl)	Hazard Ratio (95% CI)	
20	0	0 7		
30	0	0.03	30.5 (14.2-65.7) ^c	
40	0.01	0.23	8.6 (4.7	15 7\8
50	0.04	1.31 (0.31-2.32)	0.0 (4.7	-15.7]
60	0.18	1.98	5.1 (2.2-11.8) ^d	
70	0.52	3.68 (1.45-5.88)	2000 SUM	

Table 3. Age-Specific Cumulative Risk of Pancreatic Cancer^a

Hereditary Breast and Ovarian Cancer

- BRCA1
 - 2.3x increased risk
- BRCA2
 - 3.5-5.9x increased risk
 - Found in 12-17% pts with FPC
- PALB2 (partner and localizer of BRCA2)
 - Found in 1-3% pts with FPC
 - Increased risk of breast and pancreatic cancer
- Among Ashkenazi Jews with PC, 2-10% have BRCA mutation, even in absence of FH with typical BRCA-assoc cancers

Familial Pancreatic Cancer

- Multiple 1st and 2nd degree relatives with PC in absence of known genetic susceptibility syndrome
- Usually defined as 2 FDRs
 - ≥ 2 FDRs: 6x risk
 - ≥ 3 FDRs: 32x risk

Guidelines for Screening High Risk Individuals

- ACG 2015
- CAPS 2019
- AGA 2020
- ASGE 2022
- NCCN 2024
- US Preventive Service Task Force 2019 recommends against screening for pancreatic cancer in asymptomatic individuals

CAPS 2019

Table 3 Summary of the main recommendations of the 2019 International Cancer of the Pancreas Surveillance (CAPS) Consortium

Who?

- All patients with Peutz-Jeghers syndrome (carriers of a germline LKB1/STK11 gene mutation)
- All carriers of a germline CDKN2A mutation
- Carriers of a germline BRCA2, BRCA1, PALB2, ATM, MLH1, MSH2, or MSH6 gene mutation with at least one affected first-degree blood relative
- Individuals who have at least one first-degree relative with pancreatic cancer who in turn also has a first-degree relative with pancreatic cancer (familial pancreatic cancer kindred)

When (at what age)?

Age to initiate surveillance depends on an individual's gene mutation status and family history

Familial pancreatic cancer kindred (without a known germline mutation)

Start at age 50 or 55* or 10 years younger than the youngest affected blood relative

Mutation carriers: For CDKN2A1, Peutz-Jegher syndrome, start at age 40; BRCA2, ATM, PALB2 BRCA1, MLH1/MSH2 start at age 45 or 50 or 10 years younger than youngest affected blood relative

There is no consensus on the age to end surveillance

How?

At baseline	MRI/MRCP+EUS + fasting blood glucose and/or HbA1c	
During follow-up	 Alternate MRI/MRCP and EUS (no consensus if and how to alternate) Routinely test fasting blood glucose and/or HbA1c 	

Outcomes of Screening High Risk Individuals

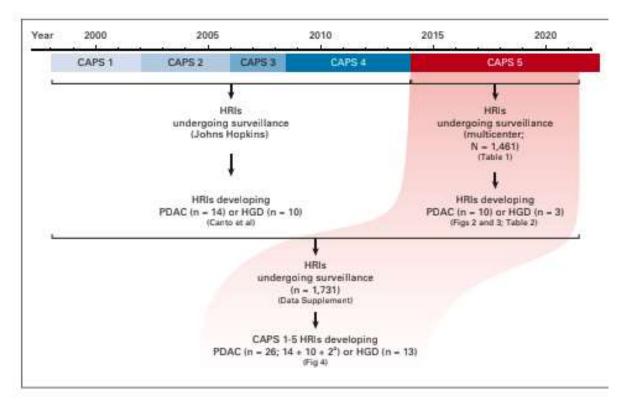
Pancreas

OPEN ACCESS

Original research

Long-term yield of pancreatic cancer surveillance in high-risk individuals

Kasper A Overbeek •, ¹ Iris J M Levink •, ¹ Brechtje D M Koopmann •, ¹ Femme Harinck •, ¹ Ingrid C A W Konings •, ¹ Margreet G E M Ausems •, ² Anja Wagner •, ³ Paul Fockens •, ⁴ Casper H van Eijck •, ⁵ Bas Groot Koerkamp •, ⁵ Olivier R C Busch •, ⁶ Marc G Besselink •, ⁶ Barbara A J Bastiaansen •, ⁴ Lydi M J W van Driel •, ¹ Nicole S Erler •, ⁷ Frank P Vleggaar •, ⁸ Jan-Werner Poley •, ¹ Djuna L Cahen •, ¹ Jeanin E van Hooft •, ⁴ Marco J Bruno •, ¹ on behalf of the Dutch Familial Pancreatic Cancer Surveillance Study Group


- 366 individuals
 - 201 FPC mutation negative
 - 165 gene mutation carriers
 - 58% CDKN2A
- Average 63 month follow-up
- 10 PDAC
 - 4 presented symptomatic metastatic cancers
 - 50% screening PDAC underwent surgery
 - Survival 18 months
- PDAC incidence
 - 9.3% among gene mutation carriers
 - 0% among FPC

Outcomes of Screening High Risk Individuals

The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival

Mohamad Dbouk, MD¹; Bryson W. Katona, MD²; Randall E. Brand, MD³; Amitabh Chak, MD, PhD⁴; Sapna Syngal, MD^{5,6}; James J. Farrell, MD⁷; Fay Kastrinos, MD⁸; Elena M. Stoffel, MD⁹; Amanda L. Blackford, MS¹⁰; Anil K. Rustgi, MD, PhD⁷; Beth Dudley, MS³; Linda S. Lee, MD^{5,6}; Ankit Chhoda, MD⁷; Richard Kwon, MD⁹; Gregory G. Ginsberg, MD²; Alison P. Klein, PhD, MHS^{1,10,11,12}; Ihab Kamel, MD^{10,13}; Ralph H. Hruban, MD^{1,10}; Jin He, MD, PhD^{10,14}; Eun Ji Shin, MD, PhD¹¹; Anne Marie Lennon, MB, PhD^{10,11,12,14}; Marcia Irene Canto, MD, MHS^{10,11}; and Michael Goggins, MB, MD^{1,10,11}

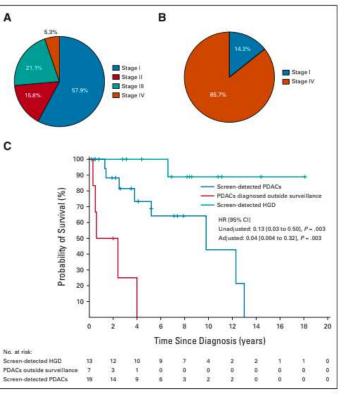


FIG 4. Screen-detected pancreatic cancers in the combined Cancer of Pancreas Screening 1-5 cohorts. (A) Graph showing eighth edition American Joint Committee on Cancer stage distribution of the screendetected PDACs (n = 19) and (B) PDACs detected outside surveillance (n = 7). (C) Kaplan-Meier curves showing survival of all screen-detected PDACs, PDACs diagnosed outside surveillance, and screen-detected HGD, HGD, high-grade dysplasia; HR, hazard ratio; PDAC, pancreatic ductal adenocarcinoma.

Pancreas Cancer Prevention: Can We Make a Difference?

- All patients
 - Counsel tobacco cessation
 - Advise alcohol in moderation
 - Encourage control of obesity and diabetes
- Take a careful family history for cancer and personal and family history for pancreatitis
 - Refer for genetic counseling and testing if appropriate
 - Refer to a high risk screening program and research protocols if appropriate

