NEW YORK SOCIETY FOR GASTROENTEROLOGY & ENDOSCOPY

48th Annual
NEW YORK COURSE
December 12-13, 2024 • New York, NY

IBD Dysplasia: Improving recognition and therapy

Nayantara Coelho-Prabhu MD Professor of Medicine Mayo Clinic, Rochester, MN Consultant – Boston Scientific, Alexion Pharma, Iterative Health Research support – Fujifilm, CDX Diagnostics

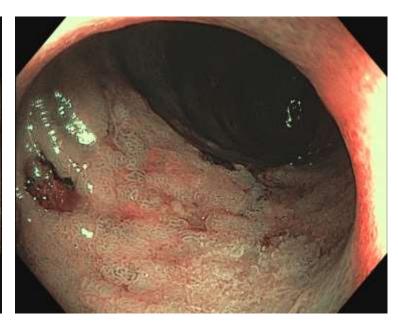
LEARNING OBJECTIVE

- IBD surveillance guidelines
- IBD lesion morphology
- Management of IBD associated lesions

Case

- 28 y/o male
- Crohn's colitis since age 15
- 2^{ary} loss of response to adalimumab, now on Vedolizumab
- June 2023 colonoscopy right and left colon biopsies show low grade dysplasia
- Mayo MRCP for ?Bile duct abnormalities on MRE confirms PSC (normal labs)
- Sept 2023 colonoscopy

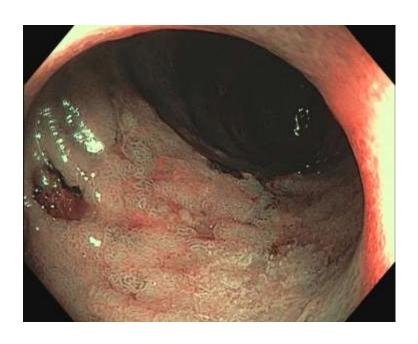
Surveillance colonoscopy



pathology

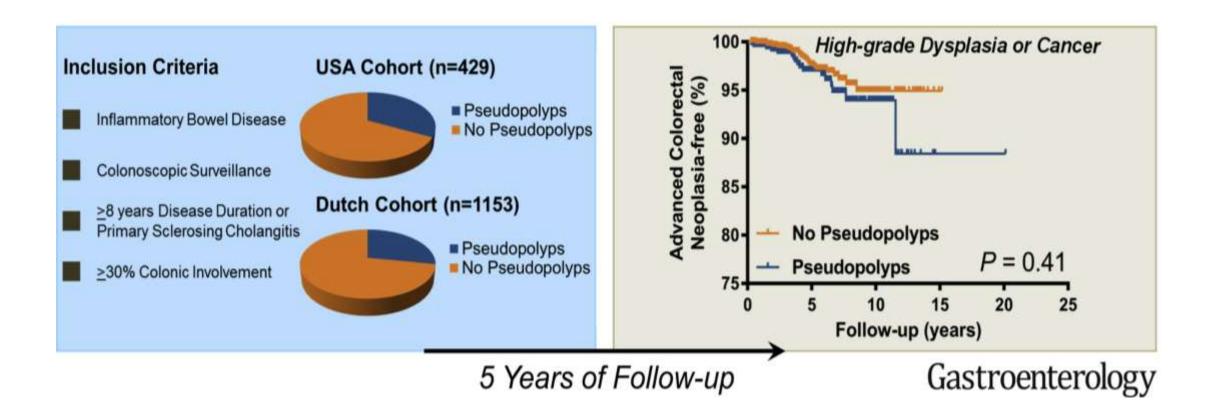
Low grade dysplasia

Indefinite dysplasia


Adenoca in a background of high grade dysplasia

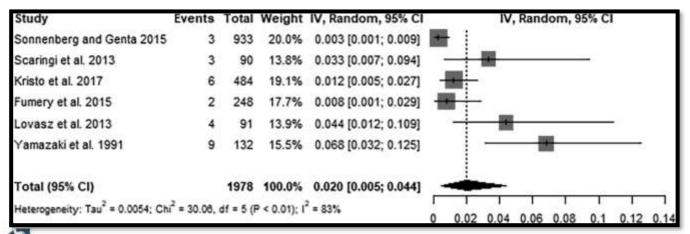
Colectomy – a week later

- 3.5 cm adenocarcinoma in cecum
- 2.4 cm adenocarcinoma in descending colon



Risk factors:

- Age at diagnosis:
 - pediatric-onset disease (UC: RR, 28.6; and CD: RR, 6.29)
- PSC
- Extensive disease
 - pancolitis (SIR, 2.4–14.8)
 - left-sided colitis (SIR, 1.4–2.8)
 - Proctitis (none)
- Active ongoing moderate-severe inflammation
- Scarred tubular colon
- Males


Pseudopolyps do not increase risk of CRN

Strictures confer increased risk in UC, not CD

Study	Events	Total	Weight	IV, Random, 95% CI		- 10 P	IV, Randor	n, 95% (31	
Xu et al. 2020	9	35	18.8%	0.257 [0.125; 0.433]		-	_	-	_	
Sonnenberg and Genta 2015	7	295	22.0%	0.024 [0.010; 0.048]	-					
Fumery et al. 2015	2	39	19.2%	0.051 [0.006; 0.173]	- 10	+	_			
Gumaste et al. 1992	17	59	20.2%	0.288 [0.178; 0.421]			-	-		
De Dombal et al. 1966	1	52	19.9%	0.019 [0.000; 0.103]		+				
Total (95% CI)		480	100.0%	0.100 [0.016; 0.234]		╧				29.6
Heterogeneity: Tau ² = 0.0367; Ch	² = 47.39,	df = 4 (F	< 0.01); I	² = 92%	0	0.1	0.2	0.3	0.4	0.5

Meta-analysis:

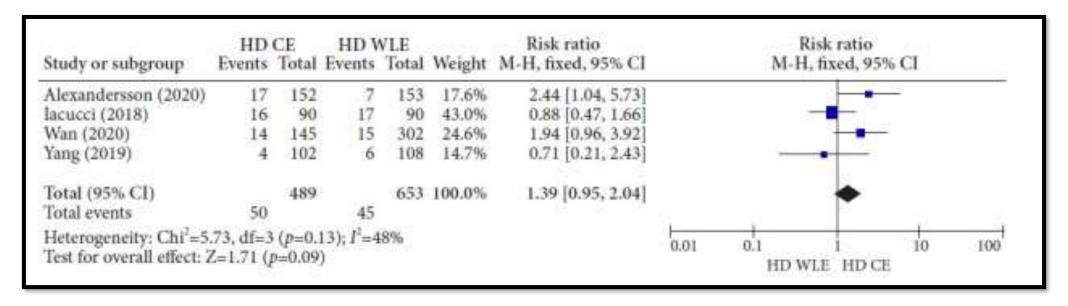
- 2 case-control and 4 cohort studies
- UC (OR = 3.53, 95%CI 1.62–7.68, P = 0.001)
- CD (OR = 1.09, 95% CI 0.54– 2.21, P = 0.811)
- Biopsy strictures in a separate jar

When to start Surveillance

- 8-10 years after disease diagnosis of UC or CD colitis
- At time of diagnosis of concomitant PSC

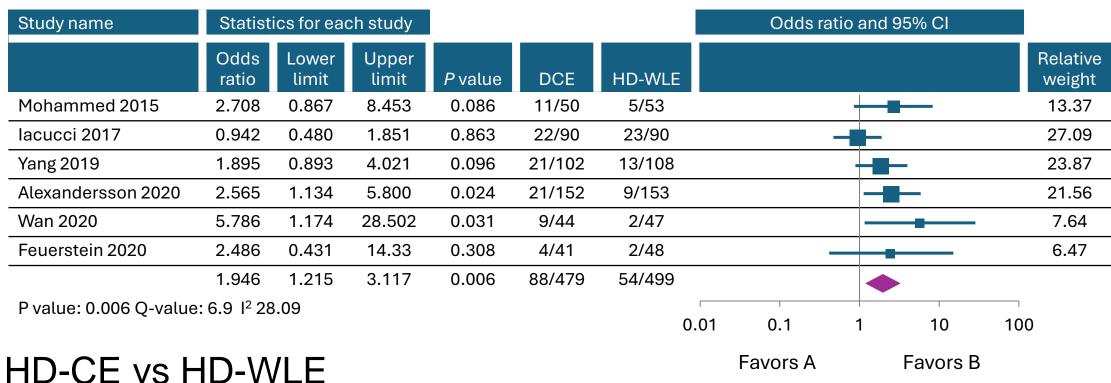
High quality surveillance colonoscopy

- Bowel preparation
- Mucosal disease activity
- Endoscopist's experience/quality
 - Cecal intubation rate
 - ADR
- Type of endoscope
 - HD vs SD
- Use of enhanced imaging



SCENIC guidelines (2015)

- High Definition (HD) scopes recommended
- Dye chromoendoscopy (DCE) recommended over White light endoscopy (WLE) for SD
- DCE suggested over WLE for HD
- NBI not suggested over DCE for HD


NO difference in RR between dye-CE and HDWLE

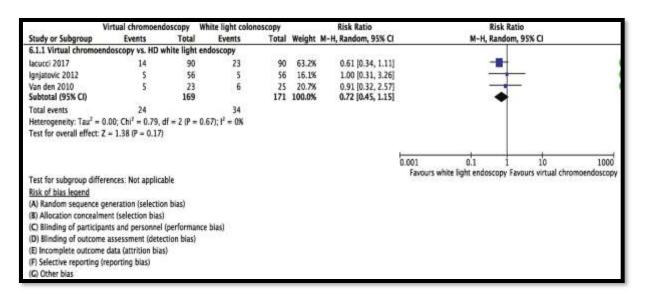
HD-CE vs HD-WLE **RR**, 1.39; 95% CI, 0.95–2.04

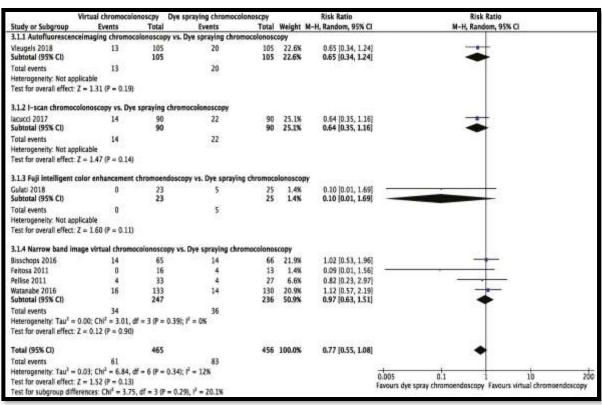
Higher ODDS of dysplasia detection using DCE vs HD-WLE

OR, 1.94; 95% CI 1.21-3 Redrawn from: Mohamed et al: Am J Gastroenterol 2024;119:719-726

No difference in detection of high grade dysplasia

			Anticipated absolute effects			
Outcomes	No. of participants (studies)	Certainty of the evidence (GRADE)	Relative effect (95% CI) ^a	Risk with HD-WLE	Risk difference with DCE	
Overall dysplasia detection	978 (6 RCTs)	High ^b	OR 1.94 (1.21–3.11)	108 per 1,000	83 more per 1,000 (20 more to 166 more)	
High-grade dysplasia detection	889 (5 RCTs)	Low ^{b,c}	OR 2.21 (0.64–7.62)	7 per 1,000	8 more per 1,000 (2 fewer to 42 more)	
Withdrawal time assessed with: minutes	798 (4 RCTs)	Low ^{b,d,e}	-	The mean withdrawal time was 15.8 min	MD 3.509 min higher (0.37 lower to 7.388 higher)	


HELIOS – HD-WLE with segmental reinspection non-inferior to HD-CE


563 patients randomized 2:2:1 to HD-WLE

	HD-WLE with segmental reinspection	HD-CE	HD-WLE with single pass		
	234	214	115		
Dysplasia detection rates	9.8%	13.1%	6.1%		
Withdrawal time (median)	19.0	26.0	15.0		

VCE no different than dye-CE and HD-WLE

Per patient - similar rates of dysplasia detection comparing VCE with dye-based CE and HD-WLE

El-Dallal, Mohammed et al. "Meta-analysis of Virtual-based Chromoendoscopy Compared With Dye-spraying Chromoendoscopy Standard and High-definition White Light Endoscopy in Patients With Inflammatory Bowel Disease at Increased Risk of Colon Cancer." Inflammatory bowel diseases vol. 26,9 (2020)

Dye-CE shown to increase dysplasia detection in patients with prior dysplasia

Deepak P, Bruining D et al, 2016

- 95 patients
- Prior SD and HD WLE with invisible and visible dysplasia
- First CE dysplastic lesions in 50 patients, including 34 new lesions

Dziegielewski C, Murthy SK et al, 2022

- 24 patients
- Prior HD-WLE with invisible or 'poorly defined' dysplasia
- 32 visible neoplastic lesions unmasked during DCE
- 29.4% with invisible dysplasia on HD-WLE no visible lesion found

Updated SCENIC 2022

- HD colonoscopy recommended
- DCE with targeted biopsy sampling recommended (over WLE) when using SD colonoscope
- DCE, WLE, NBI, and VCE with targeted biopsy sampling <u>all acceptable</u> modalities for surveillance when <u>using HD</u> colonoscope; endoscopist should have training or expertise in dysplasia detection using method of choice
- Random biopsy sampling (in addition to targeted biopsy sampling) should be used in <u>highest risk</u> patients, including those with PSC, previous neoplasia, active inflammation, or a tubular, scarred colon

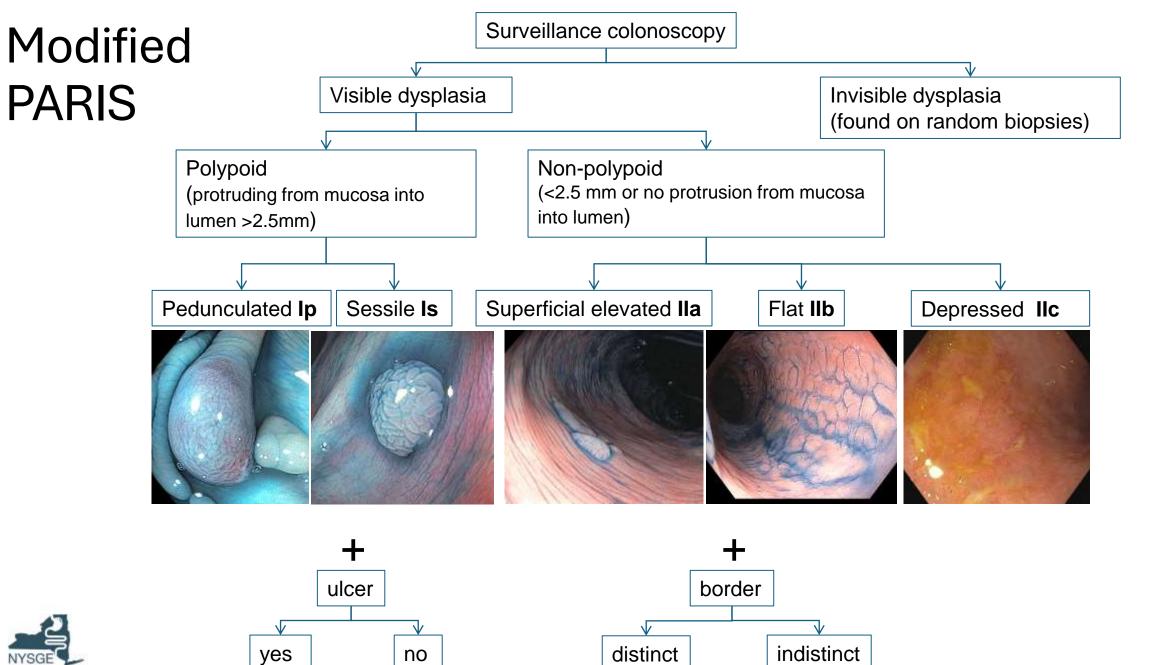
Chromoendoscopy – Tips/Pearls

- Not effective in
 - > mild inflammation
 - Inadequate bowel prep (lower than BBPS 2 in each segment)
 - Can mitigate by cleaning as you insert
- Mayo practice
 - terminal ileal examination
 - four segment random biopsies in addition to targeted
 - Visible lesions in segmental bottles

IBD visible lesion - Five 'S's

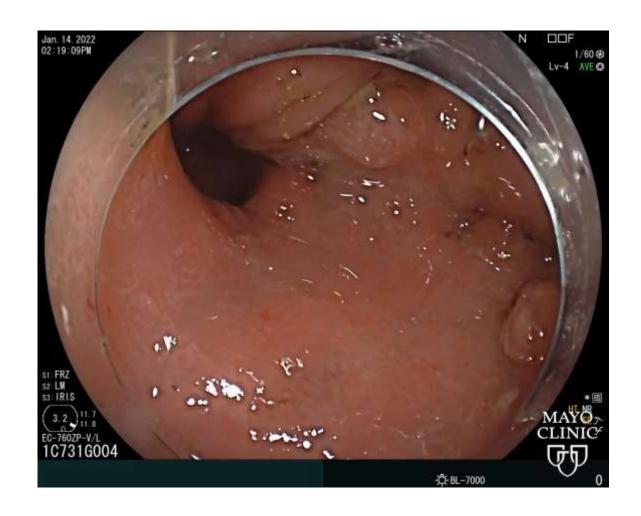
- Shape
- Size
- Site
- Surface [Kudo pit pattern]
- Surrounding [mucosal activity and other lesions]

Endoscopic reporting terminology

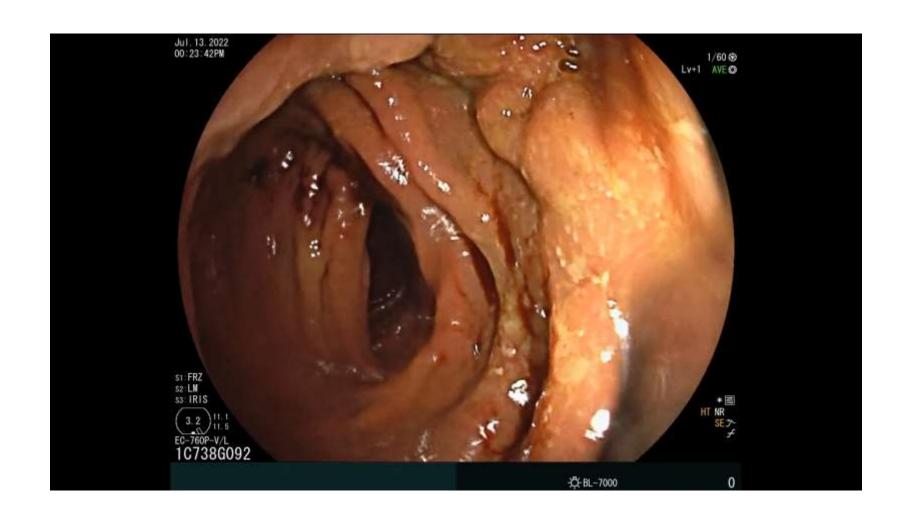


- polypoid (‡2.5 mm tall)
- nonpolypoid (<2.5 mm)
- invisible (detected on nontargeted biopsy)

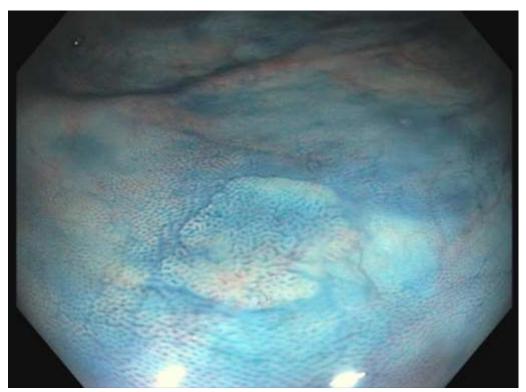
- adenomatous polyp
- adenoma-like mass (ALM)
- dysplasia-associated lesion or mass (DALM)
- flat dysplasia



Paris IIb - LGD – poorly defined margins - unresectable



Paris IIc – high grade dysplasia


Paris IIc - Adenocarcinoma

Adenoma detection using ai (cade)

Current AI algorithms exclude IBD population

Results

Performance of original CADe IN IBD WHITE LIGHT DATASET

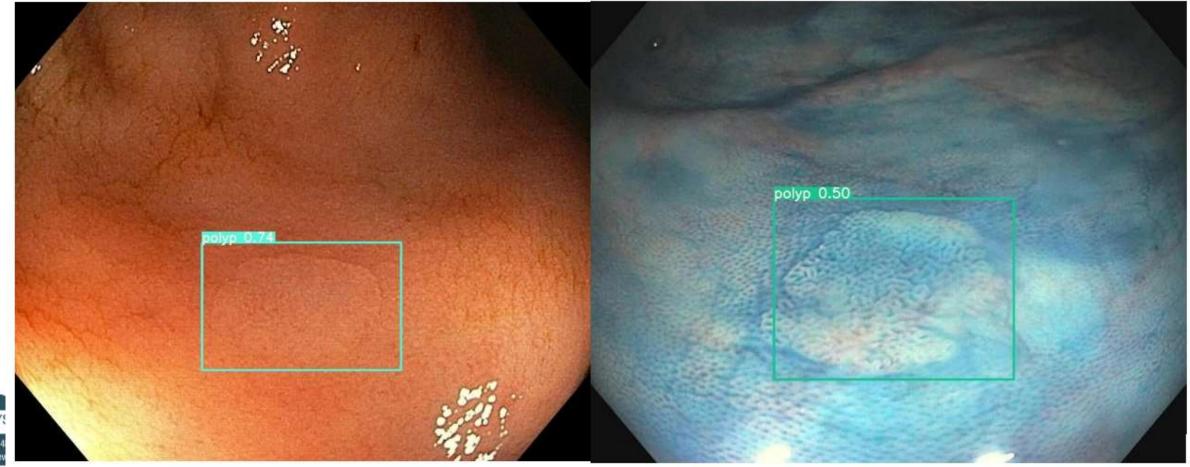
Best for dysplastic polyps

Worst for pseudopolyps and serrated changes

Pathology of IBD	Original CADe algorith							
lesion	IBD	TP	FN	FP	Sens	PPV	FPR	F1
	image							
	total							
Dysplastic	254	208	46	8	0.82	0.96	3.1%	0.89
Non-dysplastic	197	150	47	8	0.76	0.95	4.1%	0.85
Pseudopolyps	1380	468	912	10	0.34	0.98	0.7%	0.5
Serrated	57	35	22	4	0.61	0.90	7.0%	0.73
changes								
Serrated	128	101	27	5	0.79	0.95	3.9%	0.86
adenomas								
Total	2016	962	1054	35	0.50	0.97	1.7%	0.64

Results

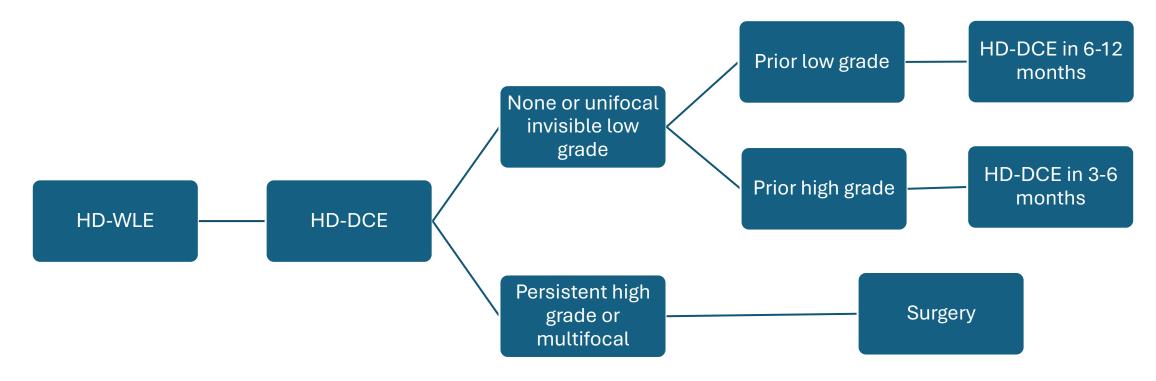
Performance of IBD-CADe AFTER RETRAINING WITH IBD LESIONS


All performance metrics significantly improved after retraining the Al system with IBD lesions

Pathology of IBD	IBD-CADe model							
lesion	Images	TP	FN	FP	Sens	PPV	FPR	F1
	in test set							
Dysplastic	30	27	3	0	0.90	1	0%	0.95
Non-dysplastic	21	19	2	1	0.90	0.95	4.7%	0.93
Pseudopolyps	108	107	1	8	0.99	0.93	7.4%	0.96
Serrated changes	7	6	1	0	0.85	1	0%	0.92
Serrated adenomas	13	11	2	0	0.84	1	0%	0.92
Total	179	170	9	9	0.95	0.95	5.0%	0.95

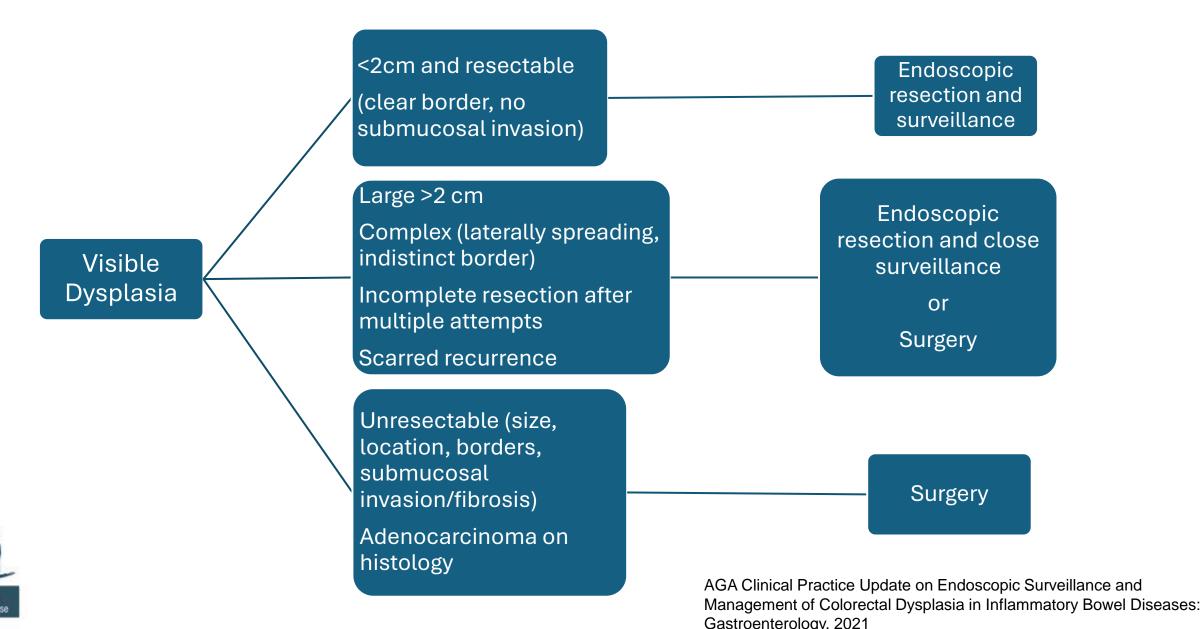
Morphology:

- Lesions with flat morphology (Paris IIa and IIb) and mixed morphology were most frequently missed by IBD-CADe.
 - IBD-CADe performed best with Paris Ip, Is and IIa lesions.



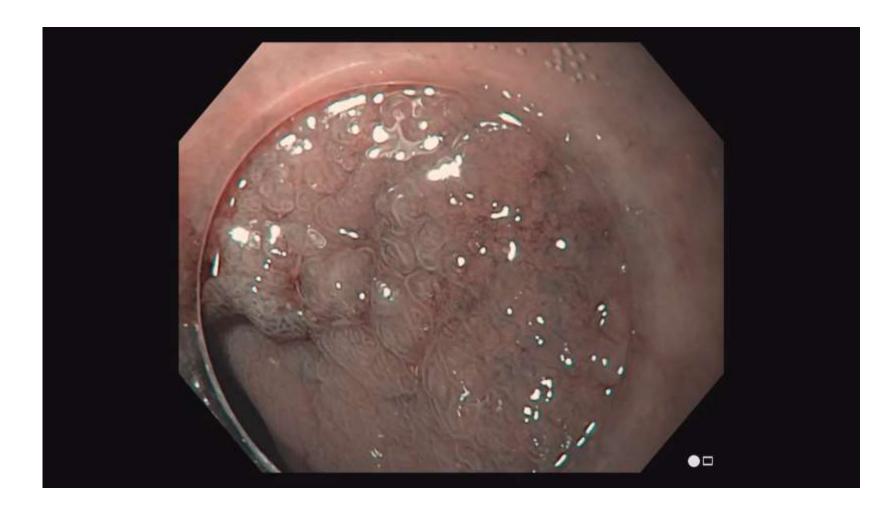
Random biopsies – highest yield in PSC and prior dysplasia

Author (year)	% Colonoscopies with dysplasia on random biopsies	% Colonoscopies with dysplasia only on random biopsies	Type of colonoscopic exam
Van den Broek (2014)	1.2%	0.5%	SD and HD scopes
Mooiweer (2015)	Not reported	1.7%	All SDWLE
Gasia (2016)	0.8% w/HDWLC	0.8% (0.9% w/non-HDWLC)	SDWLE, HDWLE, VCE, Dye-CE
Moussata (2018)	1.9%	1.2%	All with SD Dye-CE
Coelho-Prabhu (2021)	4.8%	Not reported	HDWLE and dye-CE
Hu (2021)	18%	12%	SDWLE, HDWLE and dye-CE



AGA - Management of invisible dysplasia

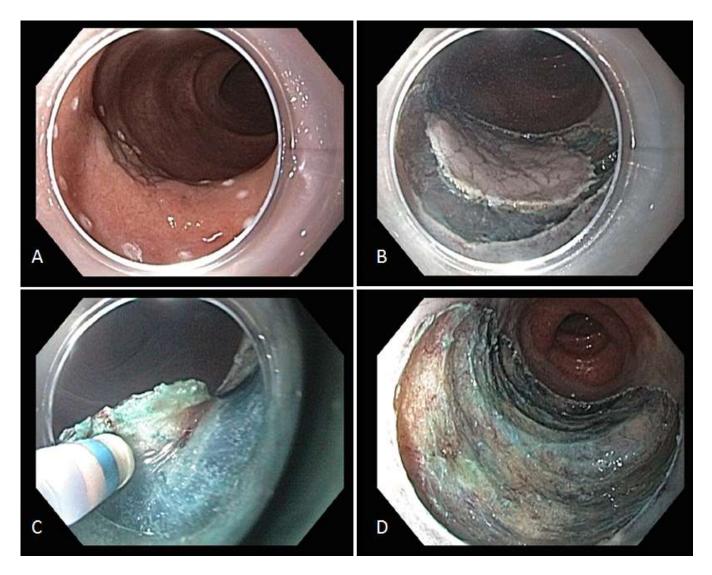
AGA – Management of Visible dysplasia

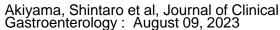


EMR and ESD are safe and effective

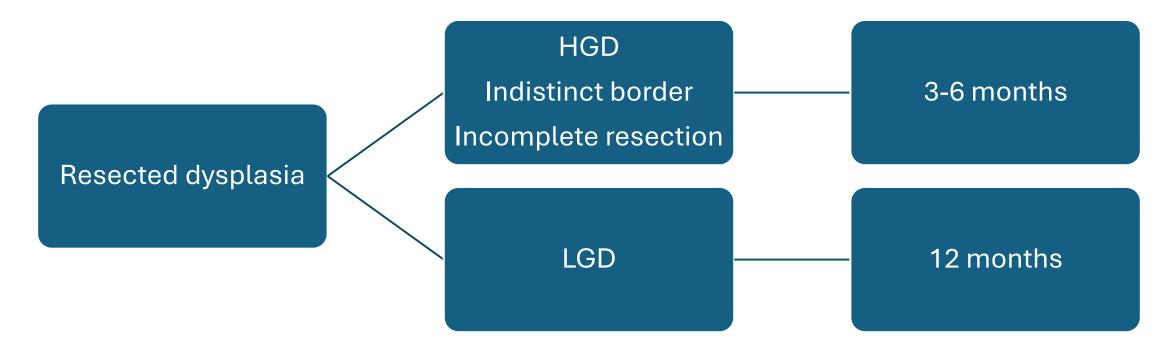
	Endoscopic mucosal resection (n = 347)	Endoscopic submucosal dissection (n=190)	Hybrid endoscopic s- ubmucosal dissection (n=73)
Lesion characteristics			
Mean size (mm)	14.6	25.1	26
Proportions of lesions < 20 mm (%)	71.3	36.8	NA
Submucosal fibrosis (%)	2.3	88.1	75.3
Polyp morphology (%)			
Polypoid	43.8	11.1	32.8
Non-polypoid	56.2	88.9	67.1
Rate of incomplete resection (%)	0.6 (95 % CI: 0%-2.7%, I ² 6.3%)	3.8 (95 % CI: 0.2 %-10 %, I ² 25.6 %)	0
Rate of en bloc resection (%)	79.7 (95 % Cl: 63 % - 90.3 %, I ² 92.6 %)	85.7 (95 % CI: 72.2 %-95.8 %, 1 ² 73.6 %)	74.6 (95 % CI: 63.1 %-84.8 %, I ² 0 %)
Rate of adverse events (%)	0.7 (95 % CI 0 %-2.7 %, I ² 0 %)	4.4 (95 % CI 0.07 %-10 %, I ² 11.8 %)	11 (95% Cl 4.3%-19.6%, l ² 0%)
Rate of recurrence during follow-up (%)	3.5 (95 % CI 0 %-11.5 %, I ² 83.4 %)	1.7 (95 % Cl 0%-6.5 %, l ² 33.5 %)	4.4 (95% CI 0.1%-11.8%, I ² 0%)

Challenging esd - fibrosis




ESD for IBD dysplasia

- Meta-analysis
- 25 studies 585 patients
- Median 24 mth f/u


- En bloc resection 0.88 (95% CI 0.82-0.92)
- R0 resection 0.78 (95% CI 0.72-0.83)

 Very low recurrence upto two years

AGA – Surveillance of visible dysplasia

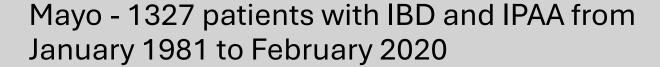
AGA - Surveillance – no dysplasia

1 year

- Moderate-severe inflammation
- PSC
- Family h/o CRC in 1st degree relative <50
- Dense pseudopolyps
- h/o invisible or highrisk dysplasia <5 years

3 years

- Mild inflammation
- Strong family history of CRC
- Features of prior severe colitis – mucosal atrophy
- h/o invisible or highrisk dysplasia >5 years
- h/o low-risk visible dysplasia <5 years


5 years

- Sustained disease remission since last colonoscopy with mucosal healing +
 - ≥ 2 consecutive exams without dysplasia
 - Minimal historical disease extent

CONTINUE SURVEILLANCE AFTER IPAA

10 (0.8%) patients developed dysplasia or adenocarcinoma

4 in pouch

5 in rectal cuff

1 in prepouch, pouch and cuff

Risk factors at time of IPAA surgery:

Rectal dysplasia

PSC

Pancolitis

Backwash ileitis

Summary

- High quality surveillance colonoscopy imperative to ↓ CRC risk
- Make the invisible visible
- Use enhanced imaging techniques, especially for lesions delineation

- Endoscopic management when possible
- Outcome data similar for EMR and ESD

Tailor surveillance intervals

QUESTIONS & ANSWERS

Coelhoprabhu.Nayantara@mayo.edu

@NayantaraCoelho

